Name of Subject : Digital Electronics Semester : 3rd

Name of faculty : Vivek dalal Branch : computer(Programmer)

week	Lecture	Name of Topic	Practical
1st	1 st	Introduction to Digital Electronics, Distinction between analog and digital signal.	Introduction with digital Lab equipments
	2 nd	Applications and advantages of digital signals	
	3rd	Binary, octal and hexadecimal number system: conversion from decimal and hexadecimal to binary and vice-versa.	
2nd	4th	Binary addition and subtraction including binary points. 1's and 2's complement method of addition/subtraction.	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive
	5th	Concept of code, weighted and non- weighted codes, examples of 8421, BCD, excess-3 and Gray code.	NOR(EXNOR) gates
	6th	Concept of parity, single and double parity and error detection.	
3rd	7th	Concept of negative and positive logic	Realisation of logic functions with
	8th	Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR, EXOR Gates,	the help of NAND or NOR gates
	9th	NAND and NOR as universal gates.	
4 th	10th	Introduction to TTL and CMOS logic families	Practical checking and viva-voce
	11th	Revision	
	12 th	Logic simplification	
5 th	13 th	Postulates of Boolean algebra, De Morgan's Theorems.	To design a half adder using XOR and NAND gates and verification of
	14 th	Implementation of Boolean (logic) equation with gates	its operation
	15th	Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits.	
6th	16 th	Test and assignment	Construction of a full adder circuit
	17th	K-Map Practice	using XOR and NAND gates and
	18 th	Half adder, design and implementation.	verify its operation
7 th	19th	and Full adder circuit , design and implementation and 4 bit adder circuit	Verification of truth table for encoder and decoder ICs, Mux and De-Mux
	20 th	Basic functions and block diagram of MUX and DEMUX with different ICs.	
	21 st	Four bit decoder circuits for 7 segment display and decoder/driver ICs.	

041	22^{nd}	Desis functions and blash discuss of	Departicul alegalizing and size so as
8th	22	Basic functions and block diagram of Encoder	Practical checking and viva-voce
	23 rd	Concept and types of latch with their	
	23	working and applications	
	24 th	Difference between a latch and a flip flop	
9th	25 th	Operation using waveforms and truth tables	Verification of truth table for
		of RS, T, D,	positive edge triggered, negative
	26 th	Master/Slave JK flip flops.	edge triggered, level triggered IC
	27 th	Introduction to Asynchronous and	flip-flops (At least one IC each of D
	41-	Synchronous counters .	latch, D flip-flop, JK flip-flops).
10th	28 th	Binary counters	Use of Asynchronous Counter ICs
	29 th	Divide by N ripple counters.	(7490 or 7493)
	30 th	Decade counter.	
11 th	31 st	Ring counter	
	32 nd	Revision	
	33 rd	Test and assignment	
12th	34th	Introduction and basic concepts including	To design a 4 bit ring counter and
		shift left and shift right. Serial in parallel	verify its operation.
		out, serial in serial out,	
	arth		
	35 th 36 th	parallel in serial out, parallel in parallel out. Universal shift register	
13 th	30 37 th	0	To design a 4 bit SISO SIDO DISO
15	57	Working principle of A/D and D/A	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip
		converters	flops and verification of their
		Brief idea about different techniques of	operation
	4	A/D conversion	
	38 th	Detail study of Binary Weighted D/A	
		converter.	
	39 th	R/2R ladder D/A converter	
14 th	40 th	Stair step Ramp A/D converter, Dual Slope	Viva
		A/D converter	
	41 st	Successive Approximation A/D Converter	
		Applications of A/D and D/A converter.	
	42^{nd}	Memory organization,.	
15th	43 rd	classification of semiconductor emories	Viva
		(RAM, ROM, PROM, EPROM,	
		EEPROM), static and dynamic RAM,	
	44 th	Introduction to 74181 ALU IC	
	45 th	Test and assignment	