Government Polytechnic, Mandi Adampur

Name of Faculty: Sh. Ravinder Kumar

Discipline: Electronics

Semester: 3

Subject: Principles of Communication Engineering
Lesson Plan Duration: 18 Week

Week		Theory	
	Lecture	Topic	Practical
	Day		Day
Week 1	Day 1	Unit 1: Introduction, Need for modulation	day 1
	Day 2	frequency translation and demodulation in	
		communication systems	
	Day 3		
		Basic scheme of a modern communication system	
Week 2	Day 4	Test Unit 1	day 2
	Day 5	Unit 2: Amplitude modulation	
	Day 6	Derivation of expression for an amplitude modulated	
		wave	
Week 3	Day 7	Carrier and side band components.	day 3
	Day 8		
		Modulation index. Spectrum and BW of AM Wave	
	Day 9		
		Relative power distribution in carrier and side bands	
Week 4	Day 10	Elementary idea of DSB-SC, SSB-SC, ISB	day 4
	Day 11	VSB modulations, their comparison, and areas of	
		applications	
	Day 12	T41140	
	D 10	Test Unit 2	1 7
Week5		Unit 3: Frequency modulation	day 5
	Day 14	Expression for frequency modulated wave and	
		its frequency spectrum (without Proof and	
	D 15	analysis of Bassel function)	
XX7 1 6	Day 15	Modulation index	1 (
Week 6	Day 16	maximum frequency deviation and deviation	day 6
	D 17	ratio	
	Day 17	<u></u>	
		BW of FM signals, Carson's rule	
	Day 18	Effect of noise on FM carrier. Noise triangle	
Week 7	Day 19	Role of limiter, Need for pre-emphasis and de-	day 7
		emphasis	
	Day 20	capture effect.	
	Day 21	Comparison of FM and AM in communication	
	D 22	systems	1 0
Week 8	_ <u> </u>	Test Unit 3	day 8
	Day 23	Unit 4: Phase modulation	
	Day 24		
		Derivation of expression for phase modulated wave	
	Day 25	modulation index	day 9

	Day 26	comparison with frequency modulation	
	Day 27	Test Unit 4	
Week 10		Unit 5: 5. Principles of AM Modulators	day 10
	Day 29	Circuit Diagram and working operation of	
	,	Collector and Base Modulator	
	Day 30	Circuit Diagram and working operation of Low	
		Modulator	
Week 11	Day 31	Circuit Diagram and working operation of Balanced	day 11
		Modulator	J
	Day 32	Test Unit 5	
	Day 33	Unit 6: Principles of FM Modulators	
Week 12	_ ·	Working principles and applications of reactance	day 12
		modulator	J
	Day 35	varactor diode modulator	
	Day 36	VCO and Armstrong phase modulator	
Week 13		Stabilization of carrier using AFC (Block diagram	day 13
		approach)	•
	Day 38	Test Unit 6	
	Day 39	Unit 7: Demodulation of AM Waves	
Week 14	Day 40	principles of demodulation of AM wave using	day 14
		diode detector circuit	•
	Day 41	concept of Clipping and formula for RC time	
		constant for minimum distortion (no derivation)	
	Day 42	Test Unit 7	
Week 15	Day 43	Unit 8: Demodulation of FM Waves	day 15
	Day 44	- Basic principles of FM detection using	
		slope detector	
	Day 45	Principle of Working of the following FM	
		demodulators	
		i. Foster-Seeley discriminator	
Week 16	Day 46	ii. Ratio detector	day 16
	Day 47		
		iii. Block diagram of Phase locked Loop (PLL)	
		FM demodulators (No Derivation)	
	Day 48	Test Unit 8	
Week 17	_ ·	Unit 9: Pulse Modulation	day 17
	Day 50		
		Statement of sampling theorem and elementary	
	Da F1	idea of sampling frequency for pulse modulation	
	Day 51	- Basic concepts of time division	
		multiplexing (TDM) and frequency division	
Mosta 40	Da 50	multiplexing (FDM)	de 10
Week 18	Day 52	Pulse Amplitude Modulation (PAM), Pulse	day 18
	Day 52	Position Modulation (PPM)	
	Day 53	Pulse Width Modulation (PWM).	
	Day 54	Test Unit 9	

	Practical
To	pic
То	observe an AM wave
	CRO produced by a
	ndard signal generator
	ng internal and external
	dulation
	measure the
	dulation index of the
	ve obtained in above
	ctical
_	e Check
	obtain an AM wave
	m a square law dulator circuit and
	serve waveforms
OUS	waveforms
File	e check
То	measure the
	measure the dulation index of the
mo	
mo	dulation index of the
mo obt	dulation index of the rained wave form.
mo obt	dulation index of the
mo obt	dulation index of the rained wave form.
mo obt	dulation index of the rained wave form.
mo obt	edulation index of the cained wave form.
mo obt File	dulation index of the rained wave form. e check obtain an FM wave
mo obt File	edulation index of the cained wave form.
File To and dev	obtain an FM wave I measure the frequency viation for different
File To and dev mo	obtain an FM wave

To obtain modulating signal from an AM detector circuit and observe the pattern for different RC time File check
To obtain modulating signal from FM detector.
6. To observe the sampled signal and compare it with the analog input signal. Note the effect of varying File check
To observe and note the pulse amplitude modulated signal (PAM) and compare them with the corresponding analog input signal
File check
8. To observe PPM and PWM signal and compare it with the analog input signal File check