		Government Polytechnic, man	di Adampı
Name of	Faculty: S	h. Balinder Singh	<u>p</u>
	e: Electroi	-	
Semester			
		ELECTRONICS	
-		on: 18 Week	
Week		Theory	
	Lecture		Practical
	Day	1	Day
Week 1	Day 1		day 1
		Unit 1 Introduction: a)	2
		Distinction between analog and digital signal.	
	Day 2	b) Applications and advantages of digital	
		signals.	
	Day 3	Test Unit 1	
Week 2	Day 4	Unit 2 Number System: a)	day 2
		Binary, octal and hexadecimal number	-
		system: conversion from decimal	
	Day 5		
		and hexadecimal to binary and vice-versa.	
	Day 6		
		b) Binary addition and subtraction including	
		binary points. 1's and 2's complement	
		method of addition/subtraction.	
Week 3	Day 7	Test Unit 2	day 3
	Day 8	Unit 3 Codes and Parity: a)	
		Concept of code, weighted and non-weighted	
		codes, examples of 8421	
	Day 9	BCD, excess-3 and Gray code.	
Week 4	Day 10	b) Concept of parity, single and double parity	day 4
		and error detection	
	Day 11	Test Unit 3	
	Day 12	Unit 4 Logic Gates and Families: a)	
		Concept of negative and positive logic	
Week5	Day 13	b) Definition, symbols and truth tables of	day 5
		NOT, AND, OR, NAND,	
	Day 14	NOR, EXOR Gates,	
	Day 15		
		NAND and NOR as universal gates.	
Week 6	Day 16	c) Introduction to TTL and CMOS logic	day 6
VV COR U		families	-
	Day 17		
		Test Unit 4	
	Day 18	Unit 5 Logic Simplification: a)	
	Í	Postulates of Boolean algebra, De Morgan's	
		Theorems.	

Weels 7	D 10		1 7
Week 7	Day 19	Implementation of Boolean (logic)	day 7
		equation with gates	
	Day 20	b) Karnaugh map (upto 4 variables)	
	Day 21		
		and simple application in developing	
		combinational logic circuits	
Week 8	Day 22	test unit 5	day 8
	Day 23	Unit 6 Arithmetic circuits : a)	
		Half adder and Full adder circuit, design and	
		implementation.	
	Day 24	b) 4 bit adder circuit	
	Day 25	Test unit 6	day 9
	Day 26	Unit 7: Decoders, Multiplexeres,	-
		Multiplexeres and Encoder a)	
		Four bit decoder circuits for 7 segment display	
		and decoder/driver ICs.	
	Day 27	b) Basic functions and block diagram of	
	Duy 27	MUX	
Week 10	Day 28	and DEMUX with different ICs	day 10
Week 10	Day 20	c) Basic functions and block diagram of	uuy 10
	Day 29	Encoder	
	Day 20	Test Unit 7	
Week 11	Day 30		dou 11
Week 11	Day 51	Unit 8 Latches and flip flops: a) Concept and types of latch with their working	day 11
		and applications	
	Day 22	b) Operation using waveforms and truth	
	Day 32		
	Day 22	tables of RS, T, D Master/Slave JK flip flops.	
Maak 12	Day 33		day 10
Week 12	Day 54	a) Difference between a lateband offin flop	day 12
	D 25	c) Difference between a latch and a flip flop	
	Day 35	Test Unit 8	
	Day 36	unit 0 Countores of Interduction to	
		unit 9 Counters: a) Introduction to	
M. 1.45	D 27	Asynchronous and Synchronous counters	1 10
Week 13		b) Binary counters	day 13
	Day 38	c) Divide by N ripple counters,	
	Day 39	Decade counter	
Week 14		Ring counter	day 14
	Day 41	test Unit 9	
	Day 42		
	Day 42	Unit 10 Shift Register: Introduction	
		and basic concepts including shift left and shift	
		right	
Week 15	Day 43	a) Serial in parallel out, serial in serial	day 15
		out,	
-	-		

	Day 44]	
		parallel in serial out, parallel in parallel out.	
	Day 45	b) Universal shift register	
Week 16	Day 46	test Unit 10	day 16
	Day 47	Unit 11 A/D and D/A Converters: Working Principle of A/D and D/A converters	
	Day 48	 Brief idea about different techniques of A/D conversion and study of • Stair step Ramp A/D converter Dual Slope A/D converter 	
Week 17	Day 49	• Successive Approximation A/D Converter	day 17
	Day 50	 Binary Weighted D/A converter R/2R ladder D/A converter 	
	Day 51	test Unit 11	
Week 18	Day 52	Unit 12 Semiconductor Memories: Memory organization, classification of semiconductor memories (RAM, ROM, PROM, EPROM, EEPROM),	day 18
	Day 53	static and dynamic RAM, introduction to 74181 ALU IC	
	Day 54	test Unit 12	

ur
Practical
Торіс
Topic
Verification and interpretation
of truth tables for AND, OR,
NOT NAND, NOR and
Exclusive OR (EXOR) and
Exclusive NOR(EXNOR)
gates
File Check
Realisation of logic functions
with the help of NAND or
NOR gates
C
File Check
To design a half adder using
XOR and NAND gates and
verification of its operation
- Construction of a full adder
circuit using XOR and NAND gates and verify its
File Check

Verification of truth table for
positive edge triggered,
negative edge triggered, level
triggered IC flip-flops (At least
one IC each of D latch , D flip-
flop, JK flip-flops).
File Check
Verification of truth table for
encoder and decoder ICs, Mux
and DeMux
File Check
To design a 4 bit SISO, SIPO,
PISO, PIPO shift registers
using JK/D flip flops and
verification of their operation.
-
File Check
To design a 4 bit ring counter
and verify its operation.
File Check
8. Use of Asynchronous Counter
ICs (7490 or 7493)
I I

File Check		